Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.445
Filtrar
1.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , 60574 , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
2.
J Cell Physiol ; 239(4): e31202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291718

RESUMO

In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.


Assuntos
Exossomos , Células de Sertoli , Masculino , Animais , Camundongos , Células de Sertoli/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Espermatogônias/metabolismo , Comunicação Autócrina , Exossomos/metabolismo , Diferenciação Celular/fisiologia
3.
Int J Biochem Cell Biol ; 165: 106478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866655

RESUMO

Remodeling of the extracellular matrix (ECM) is a key hallmark of cancer progression. A critical component of ECM remodeling is the assembly of the glycoprotein fibronectin (FN) into insoluble fibrils, which provide a scaffold for invading vascular endothelial cells and escaping cancer cells, as well as a framework for collagen deposition and oncogenic cytokine tethering. FN fibril assembly is induced by Transforming Growth Factor-ß1 (TGF-ß1), which was originally identified for its role in malignant transformation. Addition of exogenous TGF-ß1 drives FN fibril assembly while also upregulating endogenous TGF-ß1 expression and autocrine signaling. In the current study, we sought to determine if autocrine TGF-ß1 signaling plays a role in FN fibril formation in either MCF10A mammary epithelial cells, which behave similarly to healthy epithelia, or malignant MDA- MB-231 breast cancer cells. Our results show two interesting findings: first, malignant MDA-MB- 231 cells assemble less FN into fibrils, despite expressing and secreting more soluble FN; second, autocrine TGF-ß1 signaling is required for FN fibril formation in MCF10A epithelial cells, even in the presence of exogenous, active TGF-ß1. This suggests that autocrine TGF-ß1 is signaling through distinct pathways from active exogenous TGF-ß1. We hypothesized that this signaling was mediated by interactions between the TGF-ß1 latency associated peptide (LAP) and αv integrins; indeed, incubating MCF10As with soluble LAP, even in the absence of the active TGF-ß1 ligand, partially recovered FN fibril assembly. Taken together, these data suggests that autocrine TGF-ß1 plays a critical role in FN fibril assembly, and this interaction is mediated by LAP-integrin signaling.


Assuntos
Fibronectinas , Fator de Crescimento Transformador beta1 , Fibronectinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Endoteliais/metabolismo , Comunicação Autócrina , Células Epiteliais/metabolismo
4.
Stem Cell Res Ther ; 14(1): 288, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798809

RESUMO

BACKGROUND AND AIM: Liver fibrosis is prevalent among chronic diseases of the liver and represents a major health burden worldwide. Growth differentiation factor 7 (GDF7), a member of the TGFß protein superfamily, has been recently investigated for its role in repair of injured organs, but its role in chronic liver diseases remains unclear. Here, we examined hepatic GDF7 expression and its association with development and progression of human liver fibrosis. Moreover, we determined the source and target cells of GDF7 in the human liver. METHODS: GDF7 expression was analyzed in fibrotic and healthy human liver tissues by immunohistochemistry and qPCR. Cell-specific accumulation of GDF7 was examined by immunofluorescence through co-staining of cell type-specific markers on formalin-fixed paraffin-embedded human liver tissues. Public single cell RNA sequence databases were analyzed for cell type-specific expression of GDF7. In vitro, human liver organoids and LX-2 hepatic stellate cells (LX-2) were treated with recombinant human GDF7. Human liver organoids were co-cultured with activated LX-2 cells to induce an autocrine signaling circuit of GDF7 in liver organoids. RESULTS: GDF7 protein levels were elevated in fibrotic liver tissue, mainly detected in hepatocytes and cholangiocytes. In line, GDF7 mRNA was mainly detected in liver parenchymal cells. Expressions of BMPR1A and BMPR2, encoding GDF7 receptors, were readily detected in hepatocytes, cholangiocytes and stellate cells in vivo and in vitro. In vitro, recombinant GDF7 promoted liver organoid growth and enhanced expression of the progenitor cell markers (LGR5, AXIN2), but failed to activate LX-2 cells. Still, activated LX-2 cells induced GDF7 and LGR5 expression in co-cultured human liver organoids. CONCLUSIONS: Collectively, this study reveals a role of GDF7 in liver fibrosis and suggests a potential pro-regenerative function that can be utilized for amelioration of hepatic fibrosis caused by chronic liver disease.


Assuntos
Comunicação Autócrina , Hepatopatias , Humanos , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatopatias/patologia , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Sci Adv ; 9(31): eadg0666, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531435

RESUMO

The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.


Assuntos
Comunicação Autócrina , Espinhas Dendríticas , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo
6.
Sci Signal ; 16(793): eadd6527, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433004

RESUMO

Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Camundongos , Sepse/genética , Comunicação Autócrina , Fosfolipases A2 do Grupo IV/genética , Inflamação
7.
Am J Physiol Cell Physiol ; 325(1): C272-C285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273236

RESUMO

Proteinase-activated receptors (PARs) are G protein-coupled receptors (GPCRs) activated by limited n-terminal proteolysis. PARs are highly expressed in many cancer cells, including prostate cancer (PCa), and regulate various aspects of tumor growth and metastasis. Specific activators of PARs in different physiological and pathophysiological contexts remain poorly defined. In this study, we examined the androgen-independent human prostatic cancer cell line PC3 and find the functional expression of PAR1 and PAR2, but not PAR4. Using genetically encoded PAR cleavage biosensors, we showed that PC3 cells secrete proteolytic enzymes that cleave PARs and trigger autocrine signaling. CRISPR/Cas9 targeting of PAR1 and PAR2 combined with microarray analysis revealed genes that are regulated through this autocrine signaling mechanism. We found several genes that are known PCa prognostic factors or biomarker to be differentially expressed in the PAR1-knockout (KO) and PAR2-KO PC3 cells. We further examined PAR1 and PAR2 regulation of PCa cell proliferation and migration and found that absence of PAR1 promotes PC3 cell migration and suppresses cell proliferation, whereas PAR2 deficiency showed opposite effects. Overall, these results demonstrate that autocrine signaling through PARs is an important regulator of PCa cell function.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células PC-3 , Comunicação Autócrina , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias da Próstata/genética
8.
Cancer Biol Ther ; 24(1): 2184145, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37389973

RESUMO

Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Fator A de Crescimento do Endotélio Vascular , Humanos , Comunicação Autócrina , Matriz Extracelular , Fibronectinas/genética , Neoplasias de Mama Triplo Negativas/genética , Fator A de Crescimento do Endotélio Vascular/genética
9.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
10.
Am J Physiol Cell Physiol ; 324(2): C477-C487, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622074

RESUMO

Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.


Assuntos
Comunicação Autócrina , Ácido Láctico , Feminino , Humanos , Masculino , Ácido Láctico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Sci Transl Med ; 15(677): eadd3949, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599008

RESUMO

Advanced hepatic fibrosis, driven by the activation of hepatic stellate cells (HSCs), affects millions worldwide and is the strongest predictor of mortality in nonalcoholic steatohepatitis (NASH); however, there are no approved antifibrotic therapies. To identify antifibrotic drug targets, we integrated progressive transcriptomic and morphological responses that accompany HSC activation in advanced disease using single-nucleus RNA sequencing and tissue clearing in a robust murine NASH model. In advanced fibrosis, we found that an autocrine HSC signaling circuit emerged that was composed of 68 receptor-ligand interactions conserved between murine and human NASH. These predicted interactions were supported by the parallel appearance of markedly increased direct stellate cell-cell contacts in murine NASH. As proof of principle, pharmacological inhibition of one such autocrine interaction, neurotrophic receptor tyrosine kinase 3-neurotrophin 3, inhibited human HSC activation in culture and reversed advanced murine NASH fibrosis. In summary, we uncovered a repertoire of antifibrotic drug targets underlying advanced fibrosis in vivo. The findings suggest a therapeutic paradigm in which stage-specific therapies could yield enhanced antifibrotic efficacy in patients with advanced hepatic fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Células Estreladas do Fígado/patologia , Comunicação Autócrina , Fibrose , Cirrose Hepática/patologia , Fígado
12.
J Gastroenterol Hepatol ; 38(1): 138-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300571

RESUMO

BACKGROUND AND AIM: Liver cancer stem cells (LCSCs) cause therapeutic refractoriness and relapse in hepatocellular carcinoma. Heat shock factor 1 (HSF1) plays versatile roles in multiple cancers. However, the role of HSF1 in LCSCs is not well understood. This study investigated the function and signal mechanisms of HSF1 in maintaining LCSC phenotypes. METHODS: We established two LCSC lines, HepG2-R and HuH-7-R. Constitutive activation of HSF1 was observed in these LCSCs. Specific short hairpin RNAs (shRNAs) and chemical inhibitors were used to identify the relationship between HSF1 expression and LCSCs phenotypes. RESULTS: We revealed a concomitant activation modality involving HSF1 and STAT3 in LCSCs and liver cancer tissues. We also found that liver cancer patients whose HSF1 and STAT3 mRNA expression levels were high presented with unfavorable clinicopathological characteristics. Moreover, the secretion of interleukin-8 (IL-8) was elevated in the LCSC medium and was directly regulated by HSF1 at the transcriptional level. In turn, IL-8 activated HSF1 and STAT3 signaling, and a neutralizing IL-8 antibody inhibited HSF1 and STAT3 activity, reduced cancer stem cell marker expression, and decreased LCSC microsphere formation. Simultaneous intervention with HSF1 and STAT3 led to synergistically suppressed stemness acquisition and growth suppression in the LCSCs in vivo and in vitro. CONCLUSIONS: Our study indicates that IL-8 mediates the crosstalk between the HSF1 and Stat3 signaling pathways in LCSCs and that the combined targeting of HSF1 and STAT3 is a promising treatment strategy for patients with advanced liver cancer.


Assuntos
Fatores de Transcrição de Choque Térmico , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Humanos , Comunicação Autócrina , Linhagem Celular Tumoral , Fatores de Transcrição de Choque Térmico/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
Biomed Pharmacother ; 153: 113474, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076499

RESUMO

Tumor cells can secret various cytokines and chemokines, which affect the tumor cells themselves and the neighboring cells. Here, we observed that human ovarian cancer (OC) cells developed resistance to paclitaxel treatment following culture with the conditioned medium (CM) derived from paclitaxel-resistant OC (OCTR) cells. A cytokine array revealed that both OCTR cells secreted large amounts of CC chemokine ligand 2 (CCL2). CCL2 and its receptor, CCR2, were overexpressed in OCTR cells. CCL2 expression was associated with worse progression-free survival in patients with ovarian cancer. The inhibition of the CCL2/CCR2 axis suppressed the chemoresistance induced by OCTR-CM. The enhanced expression and production of CCL2 in OC cells were mediated via the NF-κB pathway, and stimulated the activation of the PI3K/Akt pathway, which resulted in the development of paclitaxel resistance in OC cells. Additionally, the OCTR cells significantly increased the migration of macrophages, which was also associated with the overproduction of CCL2 in chemoresistant cancer cells. The macrophages stimulated by OCTR cells expressed high levels of markers of M2 phenotype, and their CM significantly decreased the paclitaxel responsiveness of OC cells. The administration of a CCR2 inhibitor to a murine model significantly improved the paclitaxel sensitivity. These data suggested that apart from inducing chemoresistance in OC cells by acting as an autocrine factor, CCL2 also functions as a chemokine that induces the chemotaxis of macrophages, which may contribute to chemoresistance. Therefore, targeting the CCL2/CCR2 signaling axis may improve the therapeutic response of patients with ovarian cancer to paclitaxel.


Assuntos
Comunicação Autócrina , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Ligantes , Macrófagos/metabolismo , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo
14.
Nat Commun ; 13(1): 4130, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840551

RESUMO

Fate determination and maintenance of fetal testes in most mammals occur cell autonomously as a result of the action of key transcription factors in Sertoli cells. However, the cases of freemartin, where an XX twin develops testis structures under the influence of an XY twin, imply that hormonal factor(s) from the XY embryo contribute to sex reversal of the XX twin. Here we show that in mouse XY embryos, Sertoli cell-derived anti-Mullerian hormone (AMH) and activin B together maintain Sertoli cell identity. Sertoli cells in the gonadal poles of XY embryos lacking both AMH and activin B transdifferentiate into their female counterpart granulosa cells, leading to ovotestis formation. The ovotestes remain to adulthood and produce both sperm and oocytes, although there are few of the former and the latter fail to mature. Finally, the ability of XY mice to masculinize ovaries is lost in the absence of these two factors. These results provide insight into fate maintenance of fetal testes through the action of putative freemartin factors.


Assuntos
Ativinas , Hormônio Antimülleriano , Diferenciação Celular , Testículo , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Hormônio Antimülleriano/metabolismo , Hormônio Antimülleriano/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Feminino , Masculino , Mamíferos , Camundongos , Comunicação Parácrina/fisiologia , Sêmen , Células de Sertoli , Testículo/metabolismo
15.
Ann Diagn Pathol ; 60: 151997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35777330

RESUMO

Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. The role of angiogenesis and VEGF pathway in the pathogenesis of neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs) remains poorly understood. We assessed the expression of VEGF and VEGFR family members in cohorts of plexiform neurofibromas (pNF), MPNSTs and MPNST cell lines at transcript [pNF, n = 49; MPNST, n = 34] and protein levels [pNF, n = 21; MPNST, n = 9]. VEGF and VEGFR members were variably expressed in cell lines. VEGFA (p = 3.10-5), VEGFR1 (p = 0.08), and VEGFR2 (p = 2.10-4) mRNAs were overexpressed in MPNSTs in comparison with pNFs. Both VEGFA and VEGFR1 proteins were expressed by spindle tumor cells of pNFs and MPNSTs. VEGFA was expressed more in MPNSTs than in pNFs (p = 9.10-6) and a trend for VEGFR1 overexpression was observed (p = 0.06). VEGFR2 was not found at the protein level. The microvascular density was significantly reduced in MPNSTs as compared to pNFs (p = 0.0025), with no differences regarding the expression of the activated phosphorylated forms of ERK (P-ERK [p = 0.63]) and AKT (P-AKT [p = 0.41]) in endothelial cells, suggesting that VEGF-dependant angiogenesis may not be critical for MPNST oncogenesis. Altogether, these results indicate that the VEGF-VEGFR pathway may play a role in the development of pNFs and MPNSTs, independently of angiogenesis. Whether or not it drives an oncogenic autocrine/paracrine loop in neoplastic cells, participating in an increased activation of signaling pathways downstream of tyrosine kinase receptors, including VEGFRs, is a tempting hypothesis. Nevertheless, the specific targeting of angiogenesis in MPNSTs may not be sufficient to slow down tumor growth.


Assuntos
Neoplasias de Bainha Neural , Neurofibromatose 1 , Neurofibrossarcoma , Humanos , Carcinogênese , Células Endoteliais/metabolismo , Neovascularização Patológica , Neoplasias de Bainha Neural/patologia , Neurofibromatose 1/patologia , Proteínas Proto-Oncogênicas c-akt , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Comunicação Autócrina
16.
Nature ; 606(7912): 165-171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614226

RESUMO

T cell development in the thymus is essential for cellular immunity and depends on the organotypic thymic epithelial microenvironment. In comparison with other organs, the size and cellular composition of the thymus are unusually dynamic, as exemplified by rapid growth and high T cell output during early stages of development, followed by a gradual loss of functional thymic epithelial cells and diminished naive T cell production with age1-10. Single-cell RNA sequencing (scRNA-seq) has uncovered an unexpected heterogeneity of cell types in the thymic epithelium of young and aged adult mice11-18; however, the identities and developmental dynamics of putative pre- and postnatal epithelial progenitors have remained unresolved1,12,16,17,19-27. Here we combine scRNA-seq and a new CRISPR-Cas9-based cellular barcoding system in mice to determine qualitative and quantitative changes in the thymic epithelium over time. This dual approach enabled us to identify two principal progenitor populations: an early bipotent progenitor type biased towards cortical epithelium and a postnatal bipotent progenitor population biased towards medullary epithelium. We further demonstrate that continuous autocrine provision of Fgf7 leads to sustained expansion of thymic microenvironments without exhausting the epithelial progenitor pools, suggesting a strategy to modulate the extent of thymopoietic activity.


Assuntos
Células Epiteliais , Células-Tronco , Linfócitos T , Timo , Envelhecimento , Animais , Comunicação Autócrina , Sistemas CRISPR-Cas , Microambiente Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Fator 7 de Crescimento de Fibroblastos , Camundongos , RNA-Seq , Análise de Célula Única , Células-Tronco/citologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Timo/citologia
17.
Oncogene ; 41(21): 3024-3036, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35459783

RESUMO

Glioblastoma multiforme (GBM) with mesenchymal features exhibits enhanced chemotherapeutic resistance and results in reduced overall survival. Recent studies have suggested that there is a positive correlation between the GBM mesenchymal status and immune cell infiltration. However, the mechanisms by which GBM acquires its mesenchymal features in a tumor immune microenvironment-dependent manner remains unknown. Here, we uncovered a chemerin-mediated autocrine and paracrine network by which the mesenchymal phenotype of GBM cells is strengthened. We identified chemerin as a prognostic secretory protein mediating the mesenchymal phenotype-promoting network between tumor-associated macrophages (TAMs) and tumor cells in GBM. Mechanistically, chemerin promoted the mesenchymal features of GBM by suppressing the ubiquitin-proteasomal degradation of CMKLR1, a chemerin receptor predominantly expressed on TAMs and partially expressed on GBM cells, thereby enhancing NF-κB pathway activation. Moreover, chemerin was found to be involved in the recruitment of TAMs in the GBM tumor microenvironment. We revealed that chemerin also enhances the mesenchymal phenotype-promoting ability of TAMs and promotes their M2 polarization via a CMKLR1/NF-κB axis, which further exacerbates the mesenchymal features of GBM. Blocking the chemerin/CMKLR1 axis with 2-(α-naphthoyl) ethyltrimethylammonium iodide disrupted the mesenchymal network and suppressed tumor growth in GBM. These results suggest the therapeutic potential of targeting the chemerin/CMKLR1 axis to block the mesenchymal network in GBM.


Assuntos
Quimiocinas/metabolismo , Glioblastoma , Comunicação Autócrina , Quimiocinas/genética , Glioblastoma/patologia , Humanos , NF-kappa B , Comunicação Parácrina , Receptores de Quimiocinas , Microambiente Tumoral , Macrófagos Associados a Tumor
18.
PLoS Comput Biol ; 18(3): e1009844, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239640

RESUMO

In many human cancers, the rate of cell growth depends crucially on the size of the tumor cell population. Low, zero, or negative growth at low population densities is known as the Allee effect; this effect has been studied extensively in ecology, but so far lacks a good explanation in the cancer setting. Here, we formulate and analyze an individual-based model of cancer, in which cell division rates are increased by the local concentration of an autocrine growth factor produced by the cancer cells themselves. We show, analytically and by simulation, that autocrine signaling suffices to cause both strong and weak Allee effects. Whether low cell densities lead to negative (strong effect) or reduced (weak effect) growth rate depends directly on the ratio of cell death to proliferation, and indirectly on cellular dispersal. Our model is consistent with experimental observations from three patient-derived brain tumor cell lines grown at different densities. We propose that further studying and quantifying population-wide feedback, impacting cell growth, will be central for advancing our understanding of cancer dynamics and treatment, potentially exploiting Allee effects for therapy.


Assuntos
Comunicação Autócrina , Neoplasias , Ecologia , Retroalimentação , Humanos , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
19.
Cancer Res ; 82(8): 1518-1533, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131873

RESUMO

Wnt signaling driven by genomic alterations in genes including APC and CTNNB, which encodes ß-catenin, have been implicated in prostate cancer development and progression to metastatic castration-resistant prostate cancer (mCRPC). However, nongenomic drivers and downstream effectors of Wnt signaling in prostate cancer and the therapeutic potential of targeting this pathway in prostate cancer have not been fully established. Here we analyzed Wnt/ß-catenin signaling in prostate cancer and identified effectors distinct from those found in other tissues, including aryl hydrocarbon receptor and RUNX1, which are linked to stem cell maintenance, and ROR1, a noncanonical Wnt5a coreceptor. Wnt/ß-catenin signaling-mediated increases in ROR1 enhanced noncanonical responses to Wnt5a. Regarding upstream drivers, APC genomic loss, but not its epigenetic downregulation commonly observed in prostate cancer, was strongly associated with Wnt/ß-catenin pathway activation in clinical samples. Tumor cell upregulation of the Wnt transporter Wntless (WLS) was strongly associated with Wnt/ß-catenin pathway activity in primary prostate cancer but also associated with both canonical and noncanonical Wnt signaling in mCRPC. IHC confirmed tumor cell WLS expression in primary prostate cancer and mCRPC, and patient-derived prostate cancer xenografts expressing WLS were responsive to treatment with Wnt synthesis inhibitor ETC-1922159. These findings reveal that Wnt/ß-catenin signaling in prostate cancer drives stem cell maintenance and invasion and primes for noncanonical Wnt signaling through ROR1. They further show that autocrine Wnt production is a nongenomic driver of canonical and noncanonical Wnt signaling in prostate cancer, which can be targeted with Wnt synthesis inhibitors to suppress tumor growth. SIGNIFICANCE: This work provides fundamental insights into Wnt signaling and prostate cancer cell biology and indicates that a subset of prostate cancer driven by autocrine Wnt signaling is sensitive to Wnt synthesis inhibitors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Via de Sinalização Wnt , Comunicação Autócrina , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143418

RESUMO

Dysfunction of protein trafficking has been intensively associated with neurological diseases, including neurodegeneration, but whether and how protein transport contributes to oligodendrocyte (OL) maturation and myelin repair in white matter injury remains unclear. ER-to-Golgi trafficking of newly synthesized proteins is mediated by coat protein complex II (COPII). Here, we demonstrate that the COPII component Sec13 was essential for OL differentiation and postnatal myelination. Ablation of Sec13 in the OL lineage prevented OPC differentiation and inhibited myelination and remyelination after demyelinating injury in the central nervous system (CNS), while improving protein trafficking by tauroursodeoxycholic acid (TUDCA) or ectopic expression of COPII components accelerated myelination. COPII components were upregulated in OL lineage cells after demyelinating injury. Loss of Sec13 altered the secretome of OLs and inhibited the secretion of pleiotrophin (PTN), which was found to function as an autocrine factor to promote OL differentiation and myelin repair. These data suggest that Sec13-dependent protein transport is essential for OL differentiation and that Sec13-mediated PTN autocrine signaling is required for proper myelination and remyelination.


Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Comunicação Autócrina , Proteínas de Transporte , Diferenciação Celular/fisiologia , Citocinas , Doenças Desmielinizantes/metabolismo , Humanos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...